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The properties of edge waves confined by the interaction of buoyancy and 
Coriolis forces to the vicinity of a rigid plane boundary in a rotating, stratified, 
electrically conducting fluid pervaded by a magnetic field are established in 
some simple cases. The background shear is taken to be zero, the basic Alfv6n 
velocity V and Brunt-VgisalL frequency N are assumed uniform, and all dissi- 
pative effects are taken to be vanishingly small. It is shown that waves trapped 
against the bounding wall can occur only if V is parallel to the wall. When the 
basic rotation vector 8 is also parallel to the wall, the hydromagnetic edge waves 
have a higher frequency and smaller spatial extent perpendicular to the wall 
than their non-hydromagnetic counterparts, but more complex behaviour is 
found when 8 possesses a component normal to the wall. There are conditions 
under which edge waves may exist even when the basic density stratification is 
top-heavy (i.e. when N 2  < 0). 

1. Introduction 
The propagation of hydromagnetic waves in planetary and stellar interiors 

can be strongly influenced by Coriolis forces and by buoyancy forces due to  the 
action of gravity on density inhomogeneities (Chandrasekhar 1961, chap. 5) .  
The extent of this influence may readily be judged from the dispersion relation- 
ship for small amplitude plane waves in an incompressible fluid of zero viscosity, 
thermal conductivity and electrical resistivity when (u) the undisturbed motion 
is solid-body rotation with angular velocity S2 relative to an inertial frame, ( b )  the 
undisturbed density po depends on the (downward) vertical co-ordinate s only 
and is such that the Brunt-Vaistik frequency 

is uniform (where g is the acceleration due to gravity plus centripetal effects and 
is the mean density), and (c) the undisturbed magnetic field B is such that the - .  

corresponding Alfvh velocity 
V = B(,uF)d 

is also uniform (where p is the magnetic permeability). The approximate 
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dispersion relationship (see Hide 1969a; Acheson & Hide 1973) between the 
angular frequency w and vector wavenumber K is the biquadratic equation 

(1.3a) ~4 - ~ ~ ( 2 4  + W% + OJA) + U;(OJ& + OJ$) = 0, 

with solutions 

w2 = w k + & ( w & + ~ & ) { i  [i +~w;oJ&/(~&+w&)~]~} ,  ( i .3b)  
where 

w k  = (V. K ) ~ ,  w: = ( 2 8 .  K ) ~ / K ~ ,  w s  = (N x K ) ~ / K ~  (1.4) 

if N = -Ng / lg l ,  N being real or imaginary according as the basic density 
stratificationis bottom-heavy or top-heavy. When, as in many systems of interest, 
w y  does not greatly exceed w, and wN in magnitude, the waves differ markedly 
from the familiar non-dispersive plane-polarized Alfvhn waves, satisfying 
w2 = wb, which occur when lwnl and lwNl are negligible in comparison with 
1 w y (  . In  general, the waves are highly dispersive and individual fluid particles 
move in elliptical orbits parallel to the wave fronts. 

Waves satisfying (1.3) with real values of all three components ( K ~ ,  K ~ ,  KJ of 
the vector wavenumber K, and related work on bounded systems, have been the 
subject of several theoretical studies (for references see Acheson & Hide 1973), 
but the present investigation is evidently the first discussion of the important 
class of motions - here termed ' hydromagnetic edge waves' -which are confined 
by the action of Coriolis forces to the vicinity of a bounding surface, the com- 
ponent of K perpendicular to the boundary being complex and with imaginary 
part of the appropriate sign to ensure the vanishing of the wave amplitude a t  
great distances from the surface. Individual fluid particles oscillate along straight 
lines parallel to the wall, the presence of which enables the associated Coriolis 
force to be balanced by pressure gradients and buoyancy forces perpendicular 
to the wall [see equations (3.3), (3.4), (4.2) and (4.3)]. These edge waves are 
analogous to but more complicated than the familiar Kelvin waves (arising in the 
special case when V = 0 and Q and g are parallel to each other and to the wall), 
which propagate with angular frequency 

w = (N x k)/lkl, (1.5) 

where k is the component of K parallel to the wall. The Kelvin-wave phase speed 
is such that the vector wk x 8 is directed away from the fluid, and the amplitude 
decays as 

with distance x3 from the wall. 
The discovery of hydromagnetic planetary waves characteristic of hydro- 

magnetic oscillations of a rotating spherical shell and the suggestion that such 
waves occur in the earth's liquid core and propagate westward relative to the 
core material (Hide 1966), thus contributing to the general westward drift of 
the earth's magnetic field, have led to several attempts to identify selection 
mechanisms that may determine the sense of wave propagation in a variety of 
cylindrical and spherical rotating systems (see Hide & Stewartson 1972; Acheson 
& Hide 1973; Roberts & Soward 1972). The present investigation was thus 

exp { - 2Q I k l %/W (1.6) 
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undertaken not only for its general theoretical interest in the study of hydro- 
magnetic processes in rotating fluids but also because it held out the prospect 
of providing further insight into selection mechanisms. Not anticipated before 
the detailed analysis was carried out was the finding (see $4) that buoyancy 
forces play an essential role in the dynamics of edge waves in the system con- 
sidered here (namely a semi-infinite fluid bounded by a plane wall) even when 
their properties are highly modified by hydromagnetic effects. 

2. Basic equations 
Referred to axes rotating with constant angular velocity QJ the linearized 

equations of motion of an incompressible, stratified, conducting fluid in a system 
permeated by a uniform magnetic field B in the undisturbed state are (under the 
Boussinesq approximation) 

au/at + 2 8  x u + Vp = On + (,@)-I B. Vb + vV2u, (2.1) 
aO/at + N 2 n .  u = KV20, (2.2) 
ab/at = B . VU + 7V2b, (2.3) 
V . U  = 0, V.b = 0. (2.41, (2 .5 )  

Here u(x, t )  represents the departure of the velocity from uniform rotation, 
b(x, t )  the magnetic field perturbation, and O(xJ t )  the buoyancy perturbation, 
defined by 

where p(x, t )  is the departure of the density from the basic value p,(x). In  (2.1), 
the departure of the total pressure (including a contribution y-IB. b from the 
magnetic field) from the hydrostatic value associated with p,(x) is written as 
pp. All these perturbations from the basic state are assumed to be infinitesimally 
small, therefore justifying the use of linearized equations. 

The kinematic viscosity of the fluid is denoted by v, the thermal diffusivity by 
K and the magnetic diffusivity by 

6 = - (glP/P, 

7 = @o)-1, (2.6) 

where ois the electrical conductivity of the fluid and ,u the magnetic permeability. 
We shall define the ‘upward vertical’ direction by the unit vector n = - g/lgl, 
so that N = nN [see ( 1 . 4 ) ~  the (constant) buoyancy frequency N being given by 
(1.1). By analogy with (1.2) we define the perturbation Alfvdn velocity by 

v = b(,uP)-i. 

Since we shall be dealing with wave motions trapped against a fixed rigid 
plane impermeable boundary of electrical conductivity a;, (see § 5 ) ,  it is neces- 
sary to consider what boundary conditions are to be applied. The inviscid, per- 
fectly conducting, thermally non-diffusive limits ( v  + 0, 7 + 0, K -+ 0) will be 
taken; however, as shown by Stewartson (1960), in the steady homogeneous non- 
rotating case it is generally necessary to stipulate the behaviour of the ratios of the 
dieushities in this limit when B has a component normal to  the wall. In particu- 
lar, he showed that if v/r + 0 as v, 7 -+ 0 then the tangential component of the 

38-2 
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velocity can be allowed to be discontinuous at  the wall but the tangential com- 
ponent of the magnetic field must be continuous; the converse applies if r / v  -+ 0 
in the limit. Stewartson’s boundary-layer analysis was extended to rotating fluids 
by Hide (i969b),  who considered the case when both B andQ possess components 
normal to the wall. His results show that, for steady flows, one can again take 
the tangential component of the velocity to be discontinuous and the tangential 
magnetic field continuous if v/r + 0 as the diffusivities tend to zero. 

In  this paper, we shall consider time-dependent motions, and also include 
situations where S2 is parallel to the boundary. We shall not attempt a detailed 
analysis of the boundary layers and the associated ‘jump’ conditions on the 
tangential components of u and b in the non-diffusive limit. However, a scale 
analysis (see appendix) of the boundary-layer equations indicates that, when B 
possesses a normal component (more precisely, when the inequality (A2) is 
satisfied), the jump Av in the tangential part of v across the boundary layer is 
much less than that (Au) in the tangential part of u, provided that the diffusi- 
vities are allowed to tend to zero in an appropriate manner. The scale analysis 
shows that 

provided that K N v < 7 (with B, S2, N kept fixed). This is true regardless of the 
inclination of SZ to the wall; the boundary layer is effectively a Nartmann layer. 
We note here in passing that, although the criterion K N Y < q is probably 
satisfied by the liquid core of the earth, it is introduced here simply in order to 
ensure that the fluid can slip relative to the boundary at  x3 = 0 in the limit 
v -+ 0. Otherwise it transpires that edge-wave solutions of the kind considered 
here do not exist; see below. 

When B possesses a normal component we shall therefore allow the tangential 
component of u to be discontinuous, while demanding that the tangential com- 
ponent of b be continuous (see also Skiles 1972). A matching electromagnetic field 
in the wall must then be found. On the other hand, no such condition appears to 
be necessary when B is parallel to the boundary (see Roberts i967, p. 26). 

Thus we use the boundary condition 

[exb]=O when e . B + O ,  (2.7) 

where square brackets denote the jump across the fluid-solid interface and e is 
a unit vector normal to the wall, pointing from solid to fluid. Faraday’s Law 

V x E = - ab/at 

(where E is the electric field) implies continuity of the tangential component 
of E: 

(and also implies a[e.b]/at = 0) .  Since the boundary is impermeable we must 
require that [e.u] = 0. 
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3. Edge waves: the non-hydromagnetic case 
Wave motions in a rotating stratified fluid on an f-plane (with f = 2 8  = fn) 

in the presence of a fixed rigid plane boundary have been considered in some 
detail by Rhines (1970). To set the stage for the hydromagnetic examples con- 
sidered in later sections, we outline his analysis here, with the simple extension 
to the case when f and n are not necessarily parallel. 

We take axes Ox1x2x3, with Ox, directed normal to the wall and into the fluid 
and Ox2 aligned with the direction of phase propagation parallel to  the wall; 
thus we consider solutions of the form u = Re [€i exp i ( ~  .x - wt) ]  etc., where 
K = (0, K ~ ,  K,), and look for waves that are trapped against the wall by demanding 
that 

Throughout this paper, w and K2 will be assumed real and non-zero. The boundary 
condition (2.9), taken with the fact that the wall is rigid and the exponential 
decay of the amplitude in the x3 direction implied by (3.1), shows that u, must 
vanish everywhere. (We thus follow previous writers in seeking solutions for 
which the motion is everywhere parallel to the wall, but we must note the possi- 
bility of another type of solution, for which u3cc sinKpx3exp ( - K ~ x ~ ) .  The dis- 
cussion of this case might be of some theoretical interest but lies beyond the scope 
of the present paper.) Incompressibility [equation (2.4)] then requires that 
u2 = 0, and so fi = (a,, 0,O); the particle paths are parallel to the wall and 
perpendicular to the direction of phase propagation. The non-magnetic, 
non-dissipative versions of (2.1)-( 2.4) give 

Im K3 > 0. (3.1) 

- iwa1 = On,, f3a + i ~ &  = On2, (3.21, (3.3) 

-fa$,+i~,j3 = on,, -iwo+N2n,42,= 0. (3.4), (3.5) 

w =  &Nn,  (3.6) 

and K J K ~  = (N’nln3 + iwf2)/(N2n,n2- iwf3). (3.7) 

The consistency conditions for these equations may be written as 

We observe that n, must be non-zero for a non-trivial solution to exist; in other 
words, there must be a component of gravity in the direction of particle oscilla- 
tion. It should also be noted that f does not appear in the expression (3.6) for w .  

Re K~ = ~~(N%:n,n ,  - w2$,j3)/(N%2,n~ + 02f;), 
which shows that the decay of the amplitude with distance from the wall is 
generally oscillatory ( R ~ K ,  + 0). However, it  may be non-oscillatory in certain 
special cases, notably when neither the rotation nor gravity possesses a com- 
ponent normal to the wall (f3 = n3 = 0); the Kelvin wave is an example of such 
a case [see (1.6)]. A similar situation obtains when magnetic fields are present. 

From (3.6) and (3.7) we may obtain the ‘decay distance’, defined as do, where 

From (3.7) we find 
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the sign is chosen in accordance with (3.1) and the same sign must be chosen in 
(3.6). In the case of anf-plane (i.e. f =fn) we have 

Im K~ = ~f: N ~ , f ( n ;  + n;)/(N,n.2" + fl). 
This expression with (3.1) and (3.6) shows that sgn ( w / ~ ~ )  = sgn (nJ) .  Thus, as 
pointed out by Rhines (1970), an examination of the geometry of the situation 
shows that the phase propagates to the left (right) of an observer facing up the 
sloping boundary when f > 0 (f < 0). 

To obtain the group velocity C, we note that the right-hand side of the dis- 
persion relation (3.6) depends on the direction, but not the magnitude, of the 
projection k of the wave vector in the xlx2 plane. We may write (3.6) thus: 

0 = +P.k/lk(, 

where p = Ne x n, k = (0, K ~ ,  0). 

ao kx(pxk)  =+- Nk.n c z - = +  
ak iki3 lk12 ' 

Then 

the group velocity, as noted by Rhines (1970), is directed parallel to the wave 
crests and has magnitude 

IWnZlKZnll 

and sign Sgn'G = - sgn "%(n2f2 %f3)I. 

4. The hydromagnetic case: B parallel to wall 
It is straightforward to extend the above theory to the hydromagnetic case 

with a basic imposed magnetic field B parallel to the wall, provided we make the 
assumption that the discontinuities in the tangential components of u and b 
are independent on x, = 0 (see appendix). 

From the non-dissipative versions of (2.1)-(2.6) we find that 

a, = 8, = 0 

and - iwa, = On, + ~ K K ~ O ~ ,  (4-1) 

f 3 a 1 + i K 2 @  = @nz, - f Z a l + i K 3 @  = on,, (4% (4.3) 

- iw8+ N2nla, = 0, - iwO, = ~ K K , & .  (4.4), (4.5) 

Consistency of these equations demands that 

o = (N2nT + l'; ~ $ ) i  ( 4 4  

and K , / K ,  = (N2n1n3 +iwf,)/(N2nln2 - iof3) (4.7) 

[cf. (3.7)]. N2nl must be non-zero, so as to ensure that K ,  is not real; the presence 
of stratification in the direction of phase propagation is therefore essential if 
trapping is to occur. To understand why this should be, we examine the linearized 
vorticity equation, which is found from (2.1) to be 

a(V x u)/at-V.V(V x v) = f .Vu +VB x n, (4.8) 
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when Y =:O. In  the present case, the x1 component of the left-hand side of (4.8) 
vanishes, leaving 

= ( K 2 f 2 + K 3 f 3 ) 6 1 + ( n 3 K 2 - n 2 K 3 ) $ .  

This equation may also be derived by eliminating 9 from (4.2) and (4.3); it ex- 
presses a balance between the z1 component of the term - f . Vu representing 
compression of basic vortex lines and that of the buoyancy force curl, VO x n. 
In  the absence of stratification, the latter term vanishes, and the former must 
do likewise, requiring either that 6,  = 0 or that K~ be real. No trapped wave can 
then exist. 

Prom (4.6) and (4.7) we find 

the choice of sign being as in (4.6), and such as to give positive ImK3. On an 
f-plane we again find that the phase propagates to the left of an observer facing 
upslope when f > 0 and vice versa. 

With f not necessarily parallel to n, the decay distance dM is given by 

It can then be shown that, for fixed K ~ ,  n, f and N ,  

In  particular, if f 3  = 0 (so that the rotation vector is parallel to the wall) but 
n2 =l= 0 (so that I K ~ / E C ~ I  is bounded) the hydromagnetic waves are more strongly 
trapped than their non-hydromagnetic counterparts. If f3 is non-zero, then the 
shorter hydromagnetic waves, namely those satisfying the inequality 

are less strongly trapped than the corresponding non-hydromagnetic waves. 
It is clear that every trapped hydromagnetic wave satisfies condition (4.9) when 
ff 2 iV2ng. 

Using the notation of $3, we can write (4.6) as 

w2 = (P.k)2/lk12+(V.k)2; 

hence the group velocity has components 

N2n  n KV,K, c =-=-- aw 1 a + -  
- ak, OK2 w 

- ak, w 
a@ V ~ K ,  c =-=-* 

and 

We note that C is not parallel to the wave crests when V, 9 0. 
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5. The hydromagnetic case: B not parallel to wall 
The situation is more complicated if the basic uniform magnetic field B per- 

meating the whole system possesses a component perpendicular to the wall, 
for we are then not generally justified in taking both u1 and w1 to be discontinuous 
at the wall. As mentioned in 8 2,  a scale analysis of the boundary-layer equations 
suggests that, under appropriate assumptions about the ratios of the diffusivities 
as they tend to zero, we may take the tangential component of b to be continu- 
ous but the tangential component of u discontinuous across the interface. It 
is then necessary to consider the electromagnetic field within the wall; for definite- 
ness, we take the latter to be of infinite thickness in the - x3 direction. 

It transpires that no edge wave of steady amplitude can exist under 
these conditions; this fact may be shown most easily by a reductio ad 
absurdurn argument. We a~sume that an edge wave with exponential variation 
exp i ( ~ ~ x ~  + K~ x3 - wt) ,  with K~ and w real a2d Im K~ > 0, exists in the fluid. As in 
the previous section, i t  follows that i3 and b possess only x1 components, which, 
by the non-dissipative version of the induction equation (2.3), satisfy 

-iwal  = i ( @ 2 + ~ K 3 ) a 1 .  (5-1) 

Since the fluid is perfectly conducting, the electric field E is given by 

E = - u x (B + b), 

which is 21 - u x B on linearized theory. Hence the tangential component of E 
at the interface is 

E,n (0,u1B3, O). 

If the wall is of fmite conductivity o;u, the magnetic field perturbation within 
the wall satisfies 

ab/at = TwV2b, T~ E (,UCT~)-' 

and the electric field is given by 

E = 7,V x b. 

It is now easy to show that the continuity conditions on b and Etan across 
the interface and (5.1) cannot all be satisfied simultaneously; thus a contradic- 
tion is reached, and the postulated steady edge wave cannot exist. 

The perfectly conducting wall can be regarded aa the limit of the above, 
with 7, -+ 0. The magnetic field in the wall vanishes, except in a surface layer 
'in' the wall, where a surface current takes up the discontinuity in the tangential 
component of b. However, E vanishes everywhere in the wall, and so cannot 
match Etan in the fluid. 

When the wall is an insulator (y;'+O), the magnetic field within it must be curl- 
free. However, this field cannot have both an x1 component and the required 
(xz, t )  dependence; edge waves are again ruled out. 
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6. Top-heavy density stratification 
Finally, we describe a simple example in which the presence of a magnetic field 

may allow the existence of trapped waves of steady amplitude even when the 
basic density distribution is ‘top-heavy’, i.e. N 2  < 0 [see (1.1)]. 

We consider a fluid domain bounded above and below by rigid horizontal 
boundaries and laterally by a vertical wall. It is convenient here to use axes 
Oxyz with Ox vertical and Oy normal to the wall and pointing into the fluid. The 
horizontal boundaries are given by 

z = O , H ,  - - O O < X < C O ,  y > O  

and the vertical wall by 

O , < Z < H ,  - - C O < X < O O ,  y=O.  

We take the basic Alfv6n velocity as ( ‘v ,O,  0) and the basic rotation vector as 

(0 ,  0, if), f > 0; then, with cos(mz) exp [ i (kx  - wt)  - hy] dependence, we obtain, 
as in 94, 

sin 

12 = N2k2/(k2 + m2) + V2k2, 

A = wf ( k2 + m2)/kiVz, 

(6.1) 

(6.2) 

where the upper and lower boundary conditions require 

m = h / H ,  1 = 1,2, ...; 
(6.1) and (6.2) are analogous to (4.6) and (4.7) respectively, written in a different 
co-ordinate frame. 

Supposing now that N2 < 0, corresponding to a basic density increasing with 
height, we see that trapped stable waves ( A  > 0,  w real) may still occur, provided 
that 

w/k  < 0, V2(Z2n2/H2+k2) > IN21. (6.3a, b )  

The first of these requirements means that the phase must travel in the direction 
of decreasing x (i.e. opposite to the direction taken when N 2  > 0); the second 
condition holds for all real k and positive integers I if 

V 2  > IN21n2/H2. 

Thus, in the present configuration, if the basic magnetic field is sufficiently 
strong it overcomes the effect of the unstable density stratification, and allows 
the presence of trapped stable waves. No unstable (non-dissipative) modes 
satisfying the boundary conditions can then exist. We note that the ‘quantiza- 
tion’ of the vertical wavenumber by the presence of the horizontal boundaries 
is essential to the stabilization process. In  the absence of such boundaries, per- 
turbations of suf6ciently small total wavenumber (k2+m2)) in the x , z  plane 
would be unstable. (For systems constrained by magnetic fields and/or rotation, 
dissipative effects can give rise to instability under conditions when non-dis- 
sipative theory would predict strong stability, although the literature contains 
little information concerning the dependence of growth rates on the dissipative 
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coefficients. Such instabilities would in general be characterized by non-zero 
values of the real part of w and might therefore contribute to the generation of 
edge waves.) 

Thanks are due to Dr D. E. Loper and Dr D. J. Acheson for helpful comments 
and to the Science Research Council for the award of a post-doctoral fellowship 
to one of us (D.G.A.), tenable at University College London. Permission to 
publish this paper has been given by the Director-General of the Meteorological 
Office, where the work described herein was carried out. 

Appendix. Scale analysis of boundary-layer equations 
When V possesses a significant normal component (in a sense to be made more 

precise below) we assume the existence of a boundary layer of thickness 6 in the 
x3 direction. If the flow has a length scale L in the xl, x2 plane (L B 6) it then 
follows from V.u = V .v  = 0 that 

AuJS - AuJL, Av,/& N Avl/L, (A 1 a, b )  

where Au, is a typical magnitude of the variation in u1 and u2 across the boundary 
layer, Au, represents the corresponding variation in u,, and so on. 

As in the main part of this paper, we assume infinitesimal disturbances, so 
that nonlinear terms may be neglected. We can say that V, leads to tt significant 
contribution to the operator V.V [see (1.2), (2.1) and (2.3)] if 

v, 2 V,S/L; 
for convenience, we postulate 

K N v, v/v+ 0 as v+O. (A 3) 

We initially assume that time derivatives are negligible in the boundary-layer 
equations; self-consistency of this assumption will be checked a posteriori. The 
x1 component of the steady induction equation in the boundary layer is 

V.VU, = -qa2vI/ax;, 
which, using (AZ), gives 

Similarly, the steady buoyancy equation is 

AvJAu, N V,6/7. 

which yields 

The x1 component of the steady momentum equation is 

a ~ l a x l + 2 ( ~ 2 u 3 - ~ 3 ~ 2 ) - n , e  = V.VV,+ ~a2u,/ax:, (A 6 )  

and we shall suppose that the dominant terms are those on the right-hand side 
(corresponding to a ‘Hartmann balance’). Using (A4) it follows that the bound- 
ary-layer thickness 6 has the Hartmann value 

(rl”)tlV, (A 7) 
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and we can now check with the aid of the x,-momentum equation and (A 1 a) ,  
(As) and (A 7) that all the terms on the left of (A 6), as well as the time derivatives 
in the equations, are indeed negligible under (A3). 

Expressions (A4) and (A7) yield 

AVllAU, ( 4 7 ) 4  (As) 

which, by (A3), tends to zero with 7. It therefore seems justifiable in the inviscid, 
thermally non-diffusive, perfectly conducting limit specified by (A3) to take the 
tangential component of u as discontinuous (Au, + 0) but the tangential com- 
ponent of v as continuous (Awl = 0) a t  the wall. This argument is not entirely 
rigorous, but confidence in its applicability to the general case studied here is 
strengthened by the consistency between (As) and the solutions of Stewartson 
(1960) and Hide (1969b) for more restrictive circumstances. 
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